Newton's Law of Cooling

dT = -k(T - A)dt

Where A is the temperature of the surrounding environment, and k is the constant of proportionality. $T = Ce^{-kt} + A$

Solving First Order Linear Eqs.

Given an FODE of the form $a_1(x)y' + a_2(x)y = f(x)$ Divide both sides by $a_1(x)$ to get an equation of the standard form y' + P(x)y = q(x)Then multiply both sides by the integrating factor

 $I(x) = e^{\int \overline{P(x)dx}}$ To reverse product rule and then integrate both sides with respect to x.

Mixing Problems

 $\frac{dA}{dt} = \begin{pmatrix} conentration & rate \\ in & in \end{pmatrix}$ dt $-({{concentration * rate}\atop{out}})$ Note: The net volume might be changing so make sure to reflect that in the concentration out field.

Second Order Linear Eqs.

- Given a homogenous SODE of the form $a_2(x)y'' + a_1(x)y' + a_2(x)y = 0$ The principle of superposition states that if $y_1(x)$ and $y_2(x)$ are linearly independent solutions, then y = $c_1y_1(x) + c_2y_2(x)$ is also a solution.
- Given a homogenous SODE of <u>Constant Coefficients</u> ay'' + by' + cy = 0Its characteristic equation is given by $ar^2 + br + c = 0$

And solving for r can help us determine the form of the solution.

 $r = \frac{-b \pm \sqrt{b^2 - 4ac}}{4}$

- Case 1: $b^2 4ac > 0 \rightarrow$ roots are real and distinct 0 • General Solution: $y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$
- Case 2: $b^2 4ac < 0 \rightarrow$ roots complex
- $r=\alpha\pm\beta i$ • General Solution: $y = e^{\alpha x}(c_1 \cos(\beta x) +$
- c₂ sin(βx)) Case 1: $b^2 4a => 0 \rightarrow$ roots are real and equal

$$r = -\frac{b}{2a}$$

General Solution: $y = c_1 e^{rx} + c_2 x e^{rx}$

<u>Springs</u> - Note: Displacements are <u>positive</u> in the downward - the unward direction. direction and negative in the upward direction.

The motion of a spring is modeled by the diff eq. mx'' + cx' + kx = f(t)Where *m* is the mass attached, $c \ge 0$ is the damping

constant, and k is the spring constant. • Case 1: Free Undamped Motion (f(t)=0, c=0)

 $mx'' + kx = 0 \rightarrow x'' + \frac{k}{m}x = 0$

•
$$w = \sqrt{\frac{k}{m}}$$
 (circular frequency)

•
$$x(t) = c_1 \cos(wt) + c_2 \sin(wt)$$

- $A = \sqrt{c_1^2 + c_2^2}$
 - $\cos(\phi) = \frac{c_1}{4}$
 - $\sin(\phi) = \frac{c_2^A}{A}$
- Phase angle ϕ :
- 1^{st} quadrant $\rightarrow \phi = \arctan\left(\frac{c_1}{c}\right)$
 - 2^{nd} quadrant $\rightarrow \phi = \pi +$
 - $\arctan\left(\frac{c_1}{c_2}\right)$
 - 3^{rd} quadrant $\rightarrow \phi = \pi +$ $\arctan\left(\frac{c_1}{c_2}\right)$
 - 4^{nd} quadrant $\rightarrow \phi = 2\pi +$ $\arctan\left(\frac{c_1}{c_2}\right)$
- Amplitude-phase form:
 - $x(t) = Acos(wt \phi)$
- Case 2: Free Damped Motion (f(t)=0, c>0)
 - mx'' + cx' + kx = 0
 - Characteristic eq: $mr^2 + cr + k =$
 - 0
 - $r = \frac{-c \pm \sqrt{c^2 4mk}}{c^2 4mk}$
 - $c^2 4mk > 0 \rightarrow 2$ real distinct roots
 - Motion is overdamped
 - $-4mk = 0 \rightarrow 2$ real equal roots
 - Motion is critically damped
 - $c^2 4mk < 0 \rightarrow 2$ complex roots • Motion is underdamped
 - ٠
 - $r = p + \mu i$ $x(t) = e^{pt}(c_1 \cos(\mu t) +$
 - $c_2 \sin(\mu t))$
 - In amplitude-phase form $x(t) = Ae^{pt}\cos(\mu t \phi)$ Where μ is the pseudo-frequency.

- Nonhomogeneous Equations and Undetermined Coefficients The solution to the nonhomogeneous equation of the form ay'' + by' + cy = f(x)Is given by $y = y_c + y_p$, where y_c (called the complimentary solution) is the general solution to ay'' + by' + cy = 0, and
 - y_p (called the particular solution is any function satisfying ay'' + by' + cy = f(x). y_p can be found using the method of undetermined coefficients

If $ay'' + by' + cy = f(x)$		Then the particular solution y_p
		is
1.	f(x) = a polynomial in	$y_p = x^k$ (a general polynomial
	х	of the same degree)
		- where k is the number of
		times that 0 is a root of
		the characteristic
		equation
2.	$f(x) = e^{ax} (a$	$y_p = x^k e^{ax}$ (a general
	polynomial in x)	polynomial of the same degree)
		- where k is the number of
		times that a is a root of
		the characteristic
		equation
3.	$f(x) = e^{ax} \cos\left(bx\right)$	$y_p = x^k e^{ax}$ [(polynomial of
	(a polynomial in x)	same degree) $\cos(bx)$ +
		(another polynomial of same
Or		degree)sin(bx)]
		- where k is the number of
4.	$f(x) = e^{ax} \cos\left(bx\right)$	times that $a \pm bi$ are the
	(a polynomial in x)	roots of the
		characteristic equation.

More Springs

- Case 3: Forced Damped motion $(f(t) \neq 0, c > 0)$ o Simply use method of undetermined coefficients to solve.
- In a solution to the diff. eq., the part that approaches 0 as tapproaches ∞ is called the <u>transient part</u> of the solution, and the part that remains is called the <u>steady-state</u> part of the solution.
- Case 4: Forced Undamped Motion (Resonance, $f(t) \neq 0$, c = 0)
 - Diff eq is of the form
 - $mx'' + kx = f(t) = \begin{cases} Fsin(w_1t) \\ Fcos(w_1t) \end{cases}$
 - Resonance occurs if the angle in the external force, w_1 , is the same as the circular frequency, w, i.e. $w_1 = w = \sqrt{\frac{k}{m}}$
 - The graph is typically a wave with a constant frequency but increasing amplitude.

Laplace Transform

The Laplace Transform is defined as

 $L[f(t)] = \int_{0}^{\infty} e^{-st} f(t) dt$

- And exists only provided that the improper integral converges. Linearity Property:
 - L[af(t) + bg(t)] = aL[f(t)] + bL[g(t)]
- Shifting Theorems • If L[f(t)] = F(s), then $L[e^{at}f(t)] = F(s-a)$
 - If L[f(t)] = F(s), then
 - $L[u(t-a)f(t-a)] = e^{-as}F(s)$ $L^{-1}[e^{-as}F(s)] = u(t-a)f(t-a)$ $L[\delta(t-a)] = e^{-as}$
 - - $\frac{d}{dt}u(t-a) = \delta(t-a)$
- Inverses
- The $Adj(A) = C^{T}$, where C is the matrix of cofactors, c_{ij} , where $c_{ij} = (-1)^{i+j} \cdot \det(M_{ij})$ $A^{-1} = \frac{1}{\det(A)} Adj(A)$

Eigenvectors

For a complex eigenvalue and corresponding eigenvector, its conjugate is also an eigenvalue and all complex values in the eigenvector are replaced with their conjugate counterparts.

Eigenvalue Method for Linear Systems

- Given a homogenous linear system X' = AX, and A has eigenvalues $\lambda_1, ..., \lambda_n$ and corresponding eigenvectors v_1, \dots, v_n , the general solution is given by $x(t) = c_1 e^{\lambda_1} v_1 + \dots + c_n e^{\lambda_n} v_n$
- Given a nonhomogeneous linear system X' = AX + B, solve for the general solution by finding X_c , the general solution to the homogeneous case, and then solving for X_p , which is the vector of undetermined coefficients, where an the entry in X_p corresponds to the same entry in B.
 - Once you set up X_p , take its derivative, X_p' , and substitute it into the equation for X as
 - $X_p' = AX_p + B$
 - Then solve for the undetermined coefficients of X_p .
 - The solution then is $X = X_c + X_p$

