```
dT
```

Where A is the temperature of the surrounding environment, and k is the constant of proportionality.

$$
T=C e^{-k t}+A
$$

Solving First Order Linear Eqs.
Given an FODE of the form

$$
a_{1}(x) y^{\prime}+a_{2}(x) y=f(x)
$$

Divide both sides by $a_{1}(x)$ to get an equation of the standard form

$$
y^{\prime}+P(x) y=q(x)
$$

Then multiply both sides by the integrating factor

$$
I(x)=e^{\int \overline{P(x) d x}}
$$

To reverse product rule and then integrate both sides with respect to x .

## Mixing Problems

$$
\left.\begin{array}{c}
\frac{d A}{d t}=\left(\begin{array}{c}
\text { conentration } \\
\text { in }
\end{array} \begin{array}{c}
\text { rate } \\
\text { in }
\end{array}\right) \\
-\left(\begin{array}{c}
\text { concentration } \\
\text { out }
\end{array}\right. \text { rate }
\end{array}\right)
$$

Note: The net volume might be changing so make sure to reflect that in the concentration out field.

## Second Order Linear Eqs.

Given a homogenous SODE of the form

$$
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y=0
$$

The principle of superposition states that if $y_{1}(x)$ and $y_{2}(x)$ are linearly independent solutions, then $y=$ $c_{1} y_{1}(x)+c_{2} y_{2}(x)$ is also a solution.
Given a homogenous SODE of Constant Coefficients
$a y^{\prime \prime}+b y^{\prime}+c y=0$
Its characteristic equation is given by
$a r^{2}+b r+c=0$
And solving for $r$ can help us determine the form of the solution.

$$
r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- Case 1: $b^{2}-4 a c>0 \rightarrow$ roots are real and distinct
- General Solution: $y=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}$
- Case 2: $b^{2}-4 a c<0 \rightarrow$ roots complex

$$
r=\alpha \pm \beta i
$$

- General Solution: $y=e^{\alpha x}\left(c_{1} \cos (\beta x)+\right.$ $\left.c_{2} \sin (\beta x)\right)$
- Case 1: $b^{2}-4 a=>0 \rightarrow$ roots are real and equal

$$
r=-\frac{b}{2 a}
$$

- General Solution: $y=c_{1} e^{r x}+c_{2} x e^{r x}$


## Springs

- Note: Displacements are positive in the downward direction and negative in the upward direction. The motion of a spring is modeled by the diff eq. $m x^{\prime \prime}+c x^{\prime}+k x=f(t)$
Where $m$ is the mass attached, $\mathrm{c} \geq 0$ is the damping constant, and k is the spring constant.
- Case 1: Free Undamped Motion $(f(t)=0, c=0)$
- $m x^{\prime \prime}+k x=0 \rightarrow x^{\prime \prime}+\frac{k}{m} x=0$
- $w=\sqrt{\frac{k}{m}}$ (circular frequency)
- $x(t)=c_{1} \cos (w t)+c_{2} \sin (w t)$
- $A=\sqrt{c_{1}^{2}+c_{2}^{2}}$
- $\cos (\phi)=\frac{c_{1}}{A}$
- $\sin (\phi)=\frac{c_{2}}{A}$
- Phase angle $\phi$ :
- $1^{\text {st }}$ quadrant $\rightarrow \phi=\arctan \left(\frac{c_{1}}{c_{2}}\right)$
- $2^{\text {nd }}$ quadrant $\rightarrow \phi=\pi+$ $\arctan \left(\frac{c_{1}}{c_{2}}\right)$
- $3^{\text {rd }}$ quadrant $\rightarrow \phi=\pi+$ $\arctan \left(\frac{c_{1}}{c_{2}}\right)$
- $4^{\text {nd }}$ quadrant $\rightarrow \phi=2 \pi+$ $\arctan \left(\frac{c_{1}}{c_{2}}\right)$
- Amplitude-phase form:
- $x(t)=A \cos (w t-\phi)$
- Case 2: Free Damped Motion $(f(t)=0, c>0)$
- $m x^{\prime \prime}+c x^{\prime}+k x=0$
- Characteristic eq: $m r^{2}+c r+k=$ 0

$$
\text { - } r=\frac{-c \pm \sqrt{c^{2}-4 m k}}{2 m}
$$

- $c^{2}-4 m k>0 \rightarrow 2$ real distinct roots
- Motion is overdamped
- $c^{2}-4 m k=0 \rightarrow 2$ real equal roots
- Motion is critically damped
- $c^{2}-4 m k<0 \rightarrow 2$ complex root
- Motion is underdamped
- $r=p+\mu i$
- $x(t)=e^{p t}\left(c_{1} \cos (\mu t)+\right.$ $\left.c_{2} \sin (\mu t)\right)$
In amplitude-phase form
- $x(t)=A e^{p t} \cos (\mu t-\phi)$

Where $\mu$ is the pseudo-frequnecy

Nonhomogeneous Equations and Undetermined Coefficients The solution to the nonhomogeneous equation of the form $a y^{\prime \prime}+b y^{\prime}+c y=f(x)$
Is given by $y=y_{c}+y_{p}$, where $y_{c}$ (called the complimentary solution) is the general solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$, and $y_{p}$ (called the particular solution is any function satisfying $a y^{\prime \prime}+b y^{\prime}+c y=f(x)$.

- $\quad y_{p}$ can be found using the method of undetermined coefficients:

| If $a y^{\prime \prime}+b y^{\prime}+c y=f(x)$ | Then the particular solution $y_{p}$ is |
| :---: | :---: |
| 1. $f(x)=$ a polynomial in x | $y_{p}=x^{k}$ (a general polynomial of the same degree) <br> - where $k$ is the number of times that 0 is a root of the characteristic equation |
| 2. $\quad f(x)=e^{a x}(\mathrm{a}$ polynomial in $x$ ) | $y_{p}=x^{k} e^{a x}(\text { a general }$ <br> polynomial of the same degree) <br> - where $k$ is the number of times that $a$ is a root of the characteristic equation |
| 3. $f(x)=e^{a x} \cos (b x)$ <br> (a polynomial in x ) <br> Or <br> 4. $f(x)=e^{a x} \cos (b x)$ <br> (a polynomial in x ) | $y_{p}=x^{k} e^{a x}[\text { (polynomial of }$ <br> same degree) $\cos (b x)+$ (another polynomial of same degree) $\sin (b x)]$ <br> - where $k$ is the number of times that $a \pm b i$ are the roots of the characteristic equation. |

## More Springs

Case 3: Forced Damped motion $(f(t) \neq 0, c>0)$

- Simply use method of undetermined coefficients to solve.
In a solution to the diff. eq., the part that approaches 0 as $t$ approaches $\infty$ is called the transient part of the solution, and the part that remains is called the steady-state part of the solution. Case 4: Forced Undamped Motion (Resonance, $f(t) \neq 0, c=0$ )
- Diff eq is of the form
- $m x^{\prime \prime}+k x=f(t)=\left\{\begin{array}{l}F \sin \left(w_{1} t\right) \\ F \cos \left(w_{1} t\right)\end{array}\right.$
- Resonance occurs if the angle in the external force, $w_{1}$, is the same as the circular frequency, $w$, i.e. $w_{1}=w=\sqrt{\frac{k}{m}}$
- The graph is typically a wave with a constant frequency but increasing amplitude.


## Laplace Transform

The Laplace Transform is defined as

$$
L[f(t)]=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

And exists only provided that the improper integral converges. Linearity Property:

- $L[a f(t)+b g(t)]=a L[f(t)]+b L[g(t)]$

Shifting Theorems

- If $L[f(t)]=F(s)$, then $L\left[e^{a t} f(t)\right]=F(s-a)$
- If $L[f(t)]=F(s)$, then
- $L[u(t-a) f(t-a)]=e^{-a s} F(s)$
- $L^{-1}\left[e^{-a s} F(s)\right]=u(t-a) f(t-a)$
- $L[\delta(t-a)]=e^{-a s}$
- $\frac{d}{d t} u(t-a)=\delta(t-a)$

Inverses
The $\operatorname{Adj}(A)=C^{T}$, where $C$ is the matrix of cofactors, $c_{i j}$, where $c_{i j}=(-1)^{i+j} \cdot \operatorname{det}\left(M_{i j}\right)$
$A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{Adj}(A)$

## Eigenvectors

For a complex eigenvalue and corresponding eigenvector, its conjugate is also an eigenvalue and all complex values in the eigenvector are replaced with their conjugate counterparts.

Eigenvalue Method for Linear Systems
Given a homogenous linear system $X^{\prime}=A X$, and A has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and corresponding eigenvectors $v_{1}, \ldots, v_{n}$, the general solution is given by

$$
x(t)=c_{1} e^{\lambda_{1}} v_{1}+\cdots+c_{n} e^{\lambda_{n}} v_{n}
$$

Given a nonhomogeneous linear system $X^{\prime}=A X+B$, solve for the general solution by finding $X_{c}$, the general solution to the homogeneous case, and then solving for $X_{p}$, which is the vector of undetermined coefficients, where an the entry in $X_{p}$ corresponds to the same entry in B

- Once you set up $X_{p}$, take its derivative, $X_{p}{ }^{\prime}$, and substitute it into the equation for $X$ as $X_{p}^{\prime}=A X_{p}+B$
Then solve for the undetermined coefficients of $X_{p}$.
- The solution then is $X=X_{c}+X_{p}$


